2 Dimensions Postulates

definitions \& theorems from Origametry by Daniel Heath.
While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Postulate 1. Any two points determine a unique line.
Postulate 2. Given any two distinct points on a line, there is a one-to-one correspondence, called a ruler between all points on the line with the real numbers that sends one of the two given points to 0 , and the other to some number greater than 0 . The number p assigned to a point P by the ruler is called the coordinate.

Postulate 3. Every line l determines a decompositions of the plane into 3 distinct sets: H_{0}, H_{1}, and l where:

- Every pair of points in one of the H_{i} are on the same side of l, and
- Every pair of points where one is in $H_{0} \mathcal{G}$ the other is in $H_{!}$are on opposite sides of l.

Postulate 4. Let $\overrightarrow{O A}$ be given. Then there is a 1-1 correspondence, called a protractor, between all rays $\overrightarrow{O B}$ with the real numbers in the interval $(-\pi, \pi]$ that sends $\overrightarrow{O A}$ to 0 and $\overrightarrow{O B}$ to some number $x \in(-\pi, \pi]$. The number p assigned to a ray $\overrightarrow{O P}$ by the protractor is called its coordinate. Furthermore:

- $\overrightarrow{O B}$ has coordinate 0 if and only if $\angle A O B$ is degenerate.
- $\overrightarrow{O B}$ has coordinate π if and only if $A-O-B$, that is if $\angle A O B$ is straight.

Postulate 5. Let $\overrightarrow{O A}, \overrightarrow{O B}$, and $\overrightarrow{O C}$ be distinct rays. Then $\mu(\angle A O B)+\mu(\angle B O C)=$ $\mu(\angle A O C)$ if and only if B is in the interior of $\angle A O C$.

Postulate 6. Given a line l, there is a unique bijective function ϕ from the plane to the plane called a fold with crease l or a reflection with mirror l, such that:

1. The function ϕ leaves l unchanged
2. Let H_{0} and H_{1} be the half planes determined by l.

Then $A \in H_{i}$, implies $\phi(A) \in H_{1-i}$ for $i=0,1$.
3. If $\overline{A B} \subset \overline{H_{i}}$, then $\phi(A) \phi(B)=A B$
4. If $\angle A B C \subset \overline{H_{1}}$, then $\mu(\angle \phi(A) \phi(B) \phi(C)=\mu(\angle A B C)$

Postulate 7. If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

Theorem Playfaire's Theorem. Given a line l, and a point $A \notin l$, there is a unique line m through A and parallel to l.

