2 Dimensional Folds
 definitions \& theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Use patty paper when working on $\# 1$ to build enough intuition to complete the postulate.
Postulate 6. Given a line l, there is a unique bijective function ϕ from the plane to the plane called a fold with crease l or a reflection with mirror l, such that:

1. The function ϕ leaves l \qquad
2. Let H_{0} and H_{1} be the half planes determined by l. Then $A \in H_{i}$, implies $\phi(A) \in _$for $i=0,1$.
3. If $\overline{A B} \subset \bar{H}_{i}$, then $\phi(A) \phi(B)=$
4. If $\angle A B C \subset \overline{H_{1}}$, then $\mu(\angle \phi(A) \phi(B) \phi(C)=$ \qquad
5. Crease your patty paper to create a line l.
(a) If $A \in l$, what can you say about $\phi(A)$?
(b) Notice that the line l divides the plane into three sets, l, H_{0}, and H_{1} by the plane separation postulate. If $A \in H_{1}$, then what can you say about where $\phi(A)$ is?
(c) Draw the points A and B on the same side of l. Compare the length of line segments before and after ϕ.
(d) Extend $\overline{A B}$ from above to an angle $\angle A B C$ by selecting a point C on the same side. Compare the angles before and after ϕ.
6. Let A and B be points. Find a fold such that A folds onto B.

Definition 4.13. Let A and B be points, and M the midpoint of $\overline{A B}$. The unique line l that is perpendicular to $\overleftrightarrow{A B}$ and lies on M. The line l is the perpendicular bisector of $\overline{A B}$.
3. Let l be the perpendicular bisector of A and B. Let C be any points on l. Compare $C A$ and $C B$.
4. Draw an angle $\angle A B C$ on patty paper. Find a fold ϕ so that $\phi(\overrightarrow{B A})=\overrightarrow{B C}$. How does the crease relate to the original angle $\angle A B C$?
5. Start with two lines l and m that intersect. Can you find a fold ϕ that folds l onto m and m onto l ? Is ϕ unique?

