2 Dimensional Congruence

definitions & theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Mark distinct A and B points on a patty paper. Use a ruler to measure the distance AB, and then mark any other two points C and D so that AB = CD.

1. Can you find a fold ϕ so that $\phi(\overline{AB}) = \overline{CD}$. (Note that if S is a set, we define $\phi(S) = \{\phi(X) | X \in S\}$).

2. Can you find a fold ϕ so that $\phi(A) = C$ and $\phi(B) = D$? If so describe how to define ϕ given arbitrary points X, Y, Z, and W so that XY = ZW.

3. Can you find a fold ϕ so that $\phi(A) = D$ and $\phi(B) = C$? If so describe how to define ϕ given arbitrary points X, Y, Z, and W so that XY = ZW.

4. Recall in 1 dimension that a translation by t (where a point with coordinate x was shifted to coordinate x + t) could be created by composing two folds. Can translations be created in 2 dimensions as well? If so, describe how. If not, explain why not.

5. Consider composing two folds ϕ_1 and ϕ_2 with respective creases that intersect. Describe the effect.