2 Dimensional Congruence
 definitions \& theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Mark distinct A and B points on a patty paper. Use a ruler to measure the distance $A B$, and then mark any other two points C and D so that $A B=C D$.

1. Can you find a fold ϕ so that $\phi(\overline{A B})=\overline{C D}$. (Note that if S is a set, we define $\phi(S)=\{\phi(X) \mid X \in S\})$.
2. Can you find a fold ϕ so that $\phi(A)=C$ and $\phi(B)=D$? If so describe how to define ϕ given arbitrary points X, Y, Z, and W so that $X Y=Z W$.
3. Can you find a fold ϕ so that $\phi(A)=D$ and $\phi(B)=C$? If so describe how to define ϕ given arbitrary points X, Y, Z, and W so that $X Y=Z W$.
4. Recall in 1 dimension that a translation by t (where a point with coordinate x was shifted to coordinate $x+t$) could be created by composing two folds. Can translations be created in 2 dimensions as well? If so, describe how. If not, explain why not.
5. Consider composing two folds ϕ_{1} and ϕ_{2} with respective creases that intersect. Describe the effect.
