2 Dimensions-not lines

definitions & theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Definition 4.8. Two rays with common endpoint B are called an angle with vertex B. If $A \neq B$ is on one ray, and $C \neq B$ is on the other, then the angle is denoted by $\angle ABC$.

If \overrightarrow{BA} , \overrightarrow{BC} are the same ray, then we call $\angle ABC$ a degenerate angle. If they are opposite rays, then we call $\angle ABC$ a straight angle. If $\angle ABC$ is neither degenerate nor straight, we say tha tit is a proper angle. If $\angle ABC$ is a straight angle and $D \notin \overrightarrow{AC}$, then we call angles $\angle ABD$ and $\angle DBC$ supplementary angles.

Postulate 4. Let \overrightarrow{OA} be given. Then there is a 1-1 correspondence, called a protractor, between all rays \overrightarrow{OB} with the real numbers in the interval $(-\pi,\pi]$ that sends \overrightarrow{OA} to 0 and \overrightarrow{OB} to some number $x \in (-\pi,\pi]$. The number p assigned to a ray \overrightarrow{OP} by the protractor is called its coordinate. Furthermore:

- \overrightarrow{OB} has coordinate 0 if and only if $\angle AOB$ is degenerate.
- \overrightarrow{OB} has coordinate π if and only if A O B, that is if $\angle AOB$ is straight.
- 1. Consider a protractor that sends \overrightarrow{OA} to 0 on the Figure below.

Definition 3.1. If \overrightarrow{OA} and \overrightarrow{OB} are arbitrary rays with coordinates a and b respectively, then the angle measure $\mu(\angle AOB)$ between \overrightarrow{OA} to \overrightarrow{OB} is defined as:

$$\mu(\angle AOB) = \begin{cases} |a-b| & \text{if } |a-b| \le \lambda\\ 2\lambda - |a-b| & \text{if } |a-b| > \lambda \end{cases}$$

Postulate 5. Let \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} be distinct rays. Then $\mu(\angle AOB) + \mu(\angle BOC) = \mu(\angle AOC)$ if and only if B is in the interior of $\angle AOC$.

2. Consider the following angles with the measurements of a protractor given. Does this satisfy Postulate 5? Why or why not?

3. Consider the following:

Theorem 4.17. Angles supplementary to angles with equal measures have equal measures.

(a) Provide an example that highlights the truth of the theorem.

(b) Prove Theorem 4.17