2 Dimensions-not lines

definitions \& theorems from Origametry by Daniel Heath.
While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Definition 4.8. Two rays with common endpoint B are called an angle with vertex B. If $A \neq B$ is on one ray, and $C \neq B$ is on the other, then the angle is denoted by $\angle A B C$.

If $\overrightarrow{B A}, \overrightarrow{B C}$ are the same ray, then we call $\angle A B C$ a degenerate angle. If they are opposite rays, then we call $\angle A B C$ a straight angle. If $\angle A B C$ is neither degenerate nor straight, we say tha tit is a proper angle. If $\angle A B C$ is a straight angle and $D \notin \overleftrightarrow{A C}$, then we call angles $\angle A B D$ and $\angle D B C$ supplementary angles.

Postulate 4. Let $\overrightarrow{O A}$ be given. Then there is a 1-1 correspondence, called a protractor, between all rays $\overrightarrow{O B}$ with the real numbers in the interval $(-\pi, \pi]$ that sends $\overrightarrow{O A}$ to 0 and $\overrightarrow{O B}$ to some number $x \in(-\pi, \pi]$. The number p assigned to a ray $\overrightarrow{O P}$ by the protractor is called its coordinate. Furthermore:

- $\overrightarrow{O B}$ has coordinate 0 if and only if $\angle A O B$ is degenerate.
- $\overrightarrow{O B}$ has coordinate π if and only if $A-O-B$, that is if $\angle A O B$ is straight.

1. Consider a protractor that sends $\overrightarrow{O A}$ to 0 on the Figure below.
(a) Use your protractor to estimate $\angle A O B$
(b) Use your protractor to find $\angle A O A$.
(c) Use your protractor to find $\angle A O C$.
(d) If possible, draw an angle that is greater then π.

Definition 3.1. If $\overrightarrow{O A}$ and $\overrightarrow{O B}$ are arbitrary rays with coordinates a and b respectively, then the angle measure $\mu(\angle A O B)$ between $\overrightarrow{O A}$ to $\overrightarrow{O B}$ is defined as:

$$
\mu(\angle A O B)= \begin{cases}|a-b| & \text { if }|a-b| \leq \lambda \\ 2 \lambda-|a-b| & \text { if }|a-b|>\lambda\end{cases}
$$

Postulate 5. Let $\overrightarrow{O A}, \overrightarrow{O B}$, and $\overrightarrow{O C}$ be distinct rays. Then $\mu(\angle A O B)+\mu(\angle B O C)=$ $\mu(\angle A O C)$ if and only if B is in the interior of $\angle A O C$.
2. Consider the following angles with the measurements of a protractor given. Does this satisfy Postulate 5 ? Why or why not?

3. Consider the following:

Theorem 4.17. Angles supplementary to angles with equal measures have equal measures.
(a) Provide an example that highlights the truth of the theorem.
(b) Prove Theorem 4.17

