2 Dimensional Euclid

definitions \& theorems from Origametry by Daniel Heath.
While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Given a line l, on patty paper and a point A not on the line, what steps can you take to fold a line through A that is parallel to l ?
2. Begin with two parallel lines on a sheet of patty paper an fold any transversal over the parallel lines. What can you say about the alternating interior angles?

Theorem 6.4. If two distinct lines l_{1} and l_{2} are parallel, then there is a unique fold ϕ that takes l_{1} to l_{2}.
3. Begin with patty paper with two parallel lines l and m and a point A not on either line. Let ϕ_{l} be the fold with crease l and ϕ_{m} be the fold with crease m.
(a) Find $\phi_{l}(A)=A^{\prime}$ and $\phi_{m}\left(A^{\prime}\right)=B$.
(b) Fold the line $\overleftrightarrow{A B}$ and mark points $C=l \cap \overleftrightarrow{A B}$ and $D=m \cap \overleftrightarrow{A B}$
(c) Find a relationship between $A B$ and $C D$ that is true in general.

Theorem 6.7. Let l and m be parallel lines, and ϕ_{l} and ϕ_{m} be the fold with crease l and m respectively. Let A be any point and $B=\phi_{m} \circ \phi_{l}$. Then $l \perp \overleftrightarrow{A B}$ and $A B=$??

