## 1 Dimensional Congruence <br> definitions \& theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Mark distinct $A$ and $B$ points on a string. Use a ruler to measure the distance $A B$, and then mark any other two points $C$ and $D$ so that $A B=C D$.

1. Can you find a fold $\phi$ so that $\phi(A)=C$ and $\phi(B)=D$ ? If so describe how to define $\phi$ given arbitrary points $X, Y, Z$, and $W$ so that $X Y=Z W$.
2. Can you find a fold $\phi$ so that $\phi(A)=D$ and $\phi(B)=C$ ? If so describe how to define $\phi$ given arbitrary points $X, Y, Z$, and $W$ so that $X Y=Z W$.
3. Is both 1 and 2 possible for arbitrary points $X, Y, Z$, and $W$ so that $X Y=Z W$ ? How can you justify your answer?
4. Review \#1 and 2 from the front of this activity and notice that one of these could not be done. Try this problem again but now see if you can find two folds $\phi$ and $\psi$ such that the composition satisfies the conditions in the given problem. How about three folds?

Definition 2.7. A finite composition $\sigma$ of folds is called an isometry
Definition 2.8. The isometry I that doesn't move anything is called the identity. In other words, for every point $A, I(A)=A$. Given an isometry $\sigma$, its inverse (denoted $\sigma^{-1}$ ) is the function that "undoes" $\sigma$. In other words, for each $X$ and $Y, \sigma(X)=Y$ if and only if $\sigma^{-1}(Y)=X$.

Definition 2.9. We say that two sets of points (on the line) are congruent if each set of corresponds to the other via a map that can be written as an isometry. If sets $S$ and $S^{\prime}$ are congruent, we write $S \cong S^{\prime}$.

Definition 2.10. A composition of two folds in (1 dimensional linear geometry) is called a translation

