1 Dimensional Geometry

definitions \& theorems from Origametry by Daniel Heath.
While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Postulate L-1. Given any two distinct points, there is a 1-1 correspondence, called a ruler, between all points with the real numbers that sends one of the two given to 0 and the other to some number $x>0$. The number p assigned to a point P by the ruler is called its coordinate.

Definition 2.1. If A and B are arbitrary points with coordinates a and b, then the distance $A B$, from A and B is defined to be $A B=|a-b|$.

Definition 2.2. Let A, B, and C be distince points with coordinates a, b, and c respecitively. Then B is between A and C (denoted $A-B-C$) provided that either $a<b<c$ or $c<b<a$.

Theorem 2.1. If B is between A and C, then $A B+B C=A C$.

Definition 2.3. Given two distince points A and B we define the segment (denoted $\overline{A B}$) to be the set of points C so that either $C=A, C=B$, or $A-C-B$, i.e.

$$
\overline{A B}=\{C: C=A, C=B, \text { or } A-C-B\} .
$$

The length of a segment is the distance between its endpoints.
Definition 2.4. Given two points A and B we define the ray (denoted $\overrightarrow{A B}$) to be the set of points C so that either $C=A, C=B$, $A-C-B$, or $A-B-C$, i.e.

$$
\overrightarrow{A B}=\{C: C=A, C=B, A-C-B, \text { or } A-B-C\} .
$$

Practice 2.4. Suppose we define "points" as non-vertical lines through the origin in \mathbb{R}^{2}.

1. Verify that Postulate L-1 is satisfied.
2. Sketch the segment between 0 and 1 .

Postulate L-2. Let O be a point. There is a bijective function ϕ from the line to the line called a fold with crease O such that:

1. $\phi(O)=O$.
2. Let $\overrightarrow{O A_{0}}$ and $\overrightarrow{O A_{1}}$ be the two rays determined by O. Then $B \in \overrightarrow{O A_{i}}$ implies $\phi(B) \in$
3. If segment $\overline{B C} \subset \overrightarrow{O A_{i}}$, then $B C=\phi(B) \phi(C)$.

Definition 2.6. Let A and B be distinct points, and let a and b be their respective coordinates. Let M be the point with coordinate $\frac{a+b}{2}$. Then M is called the midpoint of the segment $\overline{A B}$.

