1 Dimensional Geometry

definitions & theorems from Origametry by Daniel Heath.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Postulate L-1. Given any two distinct points, there is a 1-1 correspondence, called a ruler, between all points with the real numbers that sends one of the two given to 0 and the other to some number x > 0. The number p assigned to a point P by the ruler is called its coordinate.

Definition 2.1. If A and B are arbitrary points with coordinates a and b, then the distance AB, from A and B is defined to be AB = |a - b|.

Definition 2.2. Let A, B, and C be distince points with coordinates a, b, and c respectively. Then B is between A and C (denoted A-B-C) provided that either a < b < c or c < b < a.

Theorem 2.1. If B is between A and C, then AB + BC = AC.

Definition 2.3. Given two distince points A and B we define the segment (denoted \overline{AB}) to be the set of points C so that either C = A, C = B, or A - C - B, i.e.

$$\overline{AB} = \{C : C = A, C = B, \text{ or } A - C - B\}.$$

The length of a segment is the distance between its endpoints.

Definition 2.4. Given two points A and B we define the ray (denoted \overrightarrow{AB}) to be the set of points C so that either C = A, C = B, A - C - B, or A - B - C, i.e.

$$\overrightarrow{AB} = \{C : C = A, C = B, A - C - B, \text{ or } A - B - C\}.$$

Practice 2.4. Suppose we define "points" as non-vertical lines through the origin in \mathbb{R}^2 .

1. Verify that Postulate L-1 is satisfied.

2. Sketch the segment between 0 and 1.

Postulate L-2. Let O be a point. There is a bijective function ϕ from the line to the line called a fold with crease O such that:

- 2. $\underbrace{Let \ \overrightarrow{OA_0}}_{OA_{1-i}}$ and $\overrightarrow{OA_1}$ be the two rays determined by O. Then $B \in \overrightarrow{OA_i}$ implies $\phi(B) \in \overrightarrow{OA_{1-i}}$.
- 3. If segment $\overline{BC} \subset \overrightarrow{OA_i}$, then $BC = \phi(B)\phi(C)$.

Definition 2.6. Let A and B be distinct points, and let a and b be their respective coordinates. Let M be the point with coordinate $\frac{a+b}{2}$. Then M is called the midpoint of the segment \overline{AB} .