Topological Symmetry Groups

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Given an abstract graph Γ , recall $Aut(\Gamma)$ is the collection (or abstract group!) or all permutations of the vertices that preserve adjacency. Find $Aut(\Gamma)$ for the abstract graphs (ignore the embedding information) below:

2. Assume all the above molecules are fairly rigid and embedded in \mathbb{R}^3 as shown above. Identify a permutation of the graph shown above that is not possible for the chemical to do in \mathbb{R}^3 with the given embedding.

3. Do any of the graph permutations in problem 1 reverse orientation? If so, which ones?

4. Recall that the orientation preserving topological symmetry group (TSG_+) of an embedded graph Γ is a sub-collection (or abstract subgroup!) of $Aut(\Gamma)$ which are induced by an orientation preserving homeomorphism of the graph in \mathbb{R}^3 . That is, there is a continuous map $h : \mathbb{R}^3 \to \mathbb{R}^3$ that has an inverse h^{-1} , and maps the graph back to itself. Note that homeomorphisms are continuous so images of straight lines can "bend" or "lengthen".

Find the TSG_+ of the two embeddings given in 1.

5. For each embedding G of a graph Γ below, find $Aut(\Gamma)$, TSG(G), and $TSG_+(G)$.

6. For each embedding G of a graph Γ below, find $Aut(\Gamma)$, TSG(G), and $TSG_+(G)$.

Aut(P)TSG(P) $TSG_{+}(\textcircled{P})$