Set Identities

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$\begin{aligned} A \cup (B \cup C) &= (A \cup B) \cup C \\ A \cap (B \cap C) &= (A \cap B) \cap C \end{aligned}$	Associative laws
$\begin{aligned} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \end{aligned}$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{A} \cup \overline{B}$ $\overline{\overline{A \cup B}} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Reading a Proof...

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Solution: We will prove that the two sets $\overline{A \cap B}$ and $\overline{A \cup B}$ are equal by showing that each set is a subset of the other.

First, we will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. We do this by showing that if x is in $\overline{A \cap B}$, then it must also be in $\overline{A} \cup \overline{B}$. Now suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, we see that the proposition $\neg((x \in A) \land (x \in B))$ is true.

By applying De Morgan's law for propositions, we see that $\neg(x \in A)$ or $\neg(x \in B)$. Using the definition of negation of propositions, we have $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, we see that this implies that $x \in \overline{A}$ or $x \in \overline{B}$. Consequently, by the definition of union, we see that $x \in \overline{A} \cup \overline{B}$. We have now shown that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. We do this by showing that if x is in $\overline{A} \cup \overline{B}$, then it must also be in $\overline{A \cap B}$. Now suppose that $x \in \overline{A} \cup \overline{B}$. By the definition of union, we know that $x \in \overline{A}$ or $x \in \overline{B}$. Using the definition of complement, we see that $x \notin A$ or $x \notin B$. Consequently, the proposition $\neg(x \in A) \lor \neg(x \in B)$ is true.

By De Morgan's law for propositions, we conclude that $\neg((x \in A) \land (x \in B))$ is true. By the definition of intersection, it follows that $\neg(x \in A \cap B)$. We now use the definition of complement to conclude that $x \in \overline{A \cap B}$. This shows that $\overline{A \cup B} \subseteq \overline{A \cap B}$.

Because we have shown that each set is a subset of the other, the two sets are equal, and the identity is proved.

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A \cup B}$.

Solution: We can prove this identity with the following steps.

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$ by definition of complement $= \{x \mid \neg (x \in (A \cap B))\}$ by definition of does not belong symbol $= \{x \mid \neg (x \in A \land x \in B)\}$ by definition of intersection $= \{x \mid \neg (x \in A) \lor \neg (x \in B)\}$ by the first De Morgan law for logical equivalences $= \{ x \mid x \notin A \lor x \notin B \}$ by definition of does not belong symbol $= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$ by definition of complement $= \{x \mid x \in \overline{A} \cup \overline{B}\}$ by definition of union $= \overline{A} \cup \overline{B}$ by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder notation, this proof uses the second De Morgan law for logical equivalences.