Relations

R_1 is a relation on \mathbb{Z} defined by $\{(a,b) a+b\leq 3\}$	R_2 is a relation on $A = \{1, 2, 3, 4\}$ defined by $\{(a, b) \max(a, b) = b\}$		
R_3 is a relation on \mathbb{Z} defined by	R_4 is a relation on \mathbb{R} defined by		
$\{(a,b) a=b^2\}$	$\{(a,b) a\cdot b\geq 0\}$		

1. For each of the relations R_i defined above, list five ordered pairs that are in the relation.

 R_1 :

 R_2 :

 R_3 :

 R_4 :

2. For each of the relations R_i above, determine if R_i has the properties listed (if applicable). If the relation does not have the indicated property, identify an ordered pair (or set of ordered pairs) that exhibits the failure.

	R_1	R_2	R_3	R_4
reflexive				
symmetric				
antisymmetric				
transitive				

3. Find an example of a relation on a set that is both symmetric and antisymmetric.

- 4. Let R be the relation on the set $\{1,2,3,4,5\}$ containing the ordered pairs: $(1,1),\ (1,2),\ (1,3),\ (2,3),\ (2,4),\ (3,1),\ (3,4),\ (3,5),\ (4,2),\ (4,5),\ (5,1),\ (5,2),$ and (5,4).
 - (a) Find $R \circ R$

(b) Find R^2