Proofs

take three

1. Determine if the following proof is valid or not.

If not valid, highlight the fallacies/error in logic.
Theorem 1. Every set of lines in the plane, no two of which are parallel, meet in a common point.

Proof 1. Certainly two lines that are not parallel meet in a common point.
Assume a collection of k lines, no two of which are parallel, meet at a common point. We will show that a collection of $k+1$ lines, no two of which are parallel, will also meet at a common point.

Consider the set of $k+1$ distinct lines in the plane. By our hypothesis, the first k of these lines meet in a common point p_{1}. Similarly the last k of these lines meet in a common point p_{2}. We will show that p_{1} and p_{2} must be the same point.
If p_{1} and p_{2} were different points, all lines containing both of them must be the same line because two points determine a line. This contradicts our assumption that all these lines are distinct. Thus, p_{1} and p_{2} are the same point. We conclude that the point $p_{1}=p_{2}$ lies on all $k+1$ lines, thus our $k+1$ distinct lines meet at a common point.
2. Prove that $\sum_{i=1}^{n} i \cdot i!=(n+1)!-1$ for all positive integers n.
3. Prove the following recursive algorithm computes a^{n}, where a is a nonzero real number and n is a nonnegative integer.
procedure power (a,n)
Data: a : nonzero real number, n : nonnegative integer
if $n=0$ then
return 1
else
return $a \cdot \operatorname{power}(a, n-1)$
end
Algorithm 1: Recursive powers of a
4. The set of full binary (and rooted) trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and eyes connecting these vertices, can be defined recursively by:
Basis Step: A single vertex r is a full binary (and rooted) tree.
Recursive Step: Suppose that T_{1} and T_{2} are disjoint full binary (and rooted) trees, there is a full binary (and rooted) tree, denoted $T_{1} \cdot T_{2}$, consisting of a root r together with edges connecting r to the root of the left subtree T_{1} and r to the root of the right subtree T_{2}.
(a) Draw the basis step tree and the family of trees one step "above" the basis step tree.
(b) Draw the family of trees two steps "above" the basis step tree.
(c) Let $h(T)$ be the height of a tree.

We define $h(\cdot)=0$, and $h\left(T_{1} T_{2}\right)=1+\max \left\{h\left(T_{1}\right), h\left(T_{2}\right)\right\}$.
Find the height of the trees in (b).

