Extra Credit \quad Proof Practice ${ }_{\text {take }} 3$

Prove or disprove the following:

1. Whenever n is a positive integer, 3 divides $n^{3}+2 n$.
2. Let n be a positive integer greater than or equal to two. If n people stand in a line with the first person in line a woman and the last person in line a man, then somewhere in the line there is a woman directly in front of a man.
3. Consider an arithmetic progression $a+(a+d)+(a+2 d)+\ldots+(a+n d)$. For all positive integers n we have, $\sum_{i=0}^{n}(a+i d)=\frac{(n+1)(2 a+n d)}{2}$.
4. Suppose that $a_{j} \equiv b_{j}(\bmod m)$ for $j=1,2, \ldots n$, then $\sum_{j=1}^{n} a_{j} \equiv \sum_{j=1}^{n} b_{j}(\bmod m)$.
5. The algorithm to the right evaluates all strings of length n as "True" if they are palindromes and false otherwise.
6. Let n be a positive integer and x be a real number. There is no recursive algorithm that can compute x^{n}.
7. Let s be a string with n characters. There is no recursive algorithm that can reverse the characters in the string s.
def Recurse(x): \#x is a list type
if $\operatorname{len}(x)<2$:
else:
if $x[0]==x[\operatorname{len}(x)-1]$:
del $x[\operatorname{len}(x)-1]$
del $x[0]$
return Recurse(x)
else:
return False

$\mathrm{x}=[1,2,1]$
Recurse(x$)$
True
$\begin{array}{l}\mathrm{y}=[1,2,3,4] \\ \operatorname{Recurse}(\mathrm{y})\end{array}$
False

8. 64 divides $3^{2 n+2}+56 n+55$ for every positive integers n.
9. For all positive integers, $a-b$ is a factor of $a^{n}-b^{n}$.
10. There is no recursive algorithm for computing the greatest common divisor of two positive integers.
