Matrices

Let a, b, and c be real non-zero numbers. Note: in Sage you will need to define a, b, and c as variables like you did in Lab0 (with "var('a', 'b', 'c')) Consider the matrices defined below for this worksheet:

- $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 6 \\ 6 & 1 \\ 2 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$ $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 7 & 6 & 0 \\ 6 & 1 & 5 \\ 0 & 5 & -2 \end{bmatrix}$ $\Omega = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \qquad \Theta = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \qquad \Phi = \begin{bmatrix} 0 & c \\ a & c \\ a & b \end{bmatrix}$
- 1. Determine which of the following sums, differences, and products are defined. If they are, compute the result.
 - A+C $\Phi+B$ $B+\Phi$ $\Omega-\Theta$
 - AC CA FE ΩA

2. Find the following:

C^T F^T Θ^T Φ

Definition 1. A $n \times n$ matrix X is symmetric if $X = X^T$.

3. Identify which of the matrices at the beginning of the worksheet are symmetric. Sage can do this by calling "X.is_symmetric()" where X is a matrix.