$\underset{with \; quantifiers!}{Somemore \; Logic}$

Let p, q, and r be propositions for the entirety of this worksheet (front & back).

- 1. Below are several ways to combine (using textbook notation) \neg , \land , and \lor .
- (a) Find the truth tables for each by hand or by using Sage. (i) $\neg(p \land q)$ (ii) $(\neg p) \land q$ (iii) $p \land (\neg q)$ (iv) $(\neg p) \land (\neg q)$

$$(v) \neg (p \lor q) \qquad (vi) (\neg p) \lor q \qquad (vii) p \lor (\neg q) \qquad (viii) (\neg p) \lor (\neg q)$$

- (b) Do any of the above truth tables look the same (i.e. are there any logical equivalences)? Which ones?
- 2. Perform the same investigation on the following (using textbook notation) and try to identify another logical equivalence.

(i)
$$p \lor (q \land r)$$
 (ii) $p \land (q \lor r)$ (iii) $(p \lor q) \land (p \lor r)$ (iv) $(p \land q) \lor (p \land r)$

Let x be an integer between -3 and 3.

- 3. Translate the following symbolic propositions into English sentences and determine the truth value.
 - (a) $\forall x, x + 1 > x$.
 - (b) $\exists x, x + 1 > x$.
 - (c) $\forall x < 0, x^2 < 0.$
 - (d) $\forall x, (x < 0 \to x^2 < 0)$
 - (e) $\exists x > 0, x^2 = 2.$
 - (f) $\exists x, (x > 0 \land x^2 = 2).$
 - (g) $\neg \forall x, x^2 > x$.

(h)
$$\exists x, \neg (x^2 > x).$$

4. Do any of the above statements seem logically equivalent? Which ones?