Induction

1. Determine if the following proofs are valid or not. If not valid, highlight the fallacies/error in logic.

Theorem 1. For every positive integer n, $\sum_{i=2}^{n} \frac{1}{(i-1)i} = \frac{3}{2} - \frac{1}{n}$

Proof 1. The result is true when n = 1 because $\frac{1}{1 \cdot 2} = \frac{3}{2} - \frac{1}{1}$. Assume that the result is true for n. Then

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)\cdot n} + \frac{1}{n(n+1)} = \frac{3}{2} - \frac{1}{n} + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{3}{2} - \frac{1}{n+1}$$

Hence, the result is true for n+1 if it is true for n. Thus we conclude $\sum_{i=2}^{n} \frac{1}{(i-1)i} = \frac{3}{2} - \frac{1}{n}$.

Theorem 2. Every set of lines in the plane, no two of which are parallel, meet in a common point.

Proof 2. Certainly two lines that are not parallel meet in a common point.

Assume a collection of k lines, no two of which are parallel, meet at a common point. We will show that a collection of k + 1 lines, no two of which are parallel, will also meet at a common point.

Consider the set of k + 1 distinct lines in the plane. By our hypothesis, the first k of these lines meet in a common point p_1 . Similarly the last k of these lines meet in a common point p_2 . We will show that p_1 and p_2 must be the same point.

If p_1 and p_2 were different points, all lines containing both of them must be the same line because two points determine a line. This contradicts our assumption that all these lines are distinct. Thus, p_1 and p_2 are the same point. We conclude that the point $p_1 = p_2$ lies on all k + 1 lines, thus our k + 1 distinct lines meet at a common point. 2. The set of *full binary (and rooted) trees*, where a rooted tree consists of a set of vertices containing a distinguished vertex called the *root*, and eyes connecting these vertices, can be defined recursively by:

Basis Step: A single vertex r is a full binary (and rooted) tree.

Recursive Step: Suppose that T_1 and T_2 are disjoint full binary (and rooted) trees, there is a full binary (and rooted) tree, denoted $T_1 \cdot T_2$, consisting for a root r together with edges connecting r to the root of the left subtree T_1 and r to the root of the right subtree T_2 .

- (a) Draw the basis step tree.
- (b) Draw the family of trees one step "above" the basis step tree.

(c) Draw the family of trees two steps "above" the basis step tree.

- (d) Let h(T) be the height of a tree. We define $h(\cdot) = 0$, and $h(T_1T_2) = 1 + \max\{h(T_1), h(T_2)\}$. Find the height of the trees in (c).
- 3. Let T be a binary tree, and n(T) be the number of vertices in T. Use induction to prove if T is a full binary tree, then $n(T) \ge 2h(T) + 1$.