Logic Arguments

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$p \xrightarrow{p \to q}$ $\therefore \overline{q}$	$(p \land (p \rightarrow q)) \rightarrow q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \rightarrow q \\ \neg p \end{array} $	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $p \lor q$ $p \lor q$ q q	$((p \lor q) \land \neg p) \rightarrow q$	Disjunctive syllogism
$\frac{p}{p \lor q}$	$p \rightarrow (p \lor q)$	Addition
$\frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\frac{p}{\frac{q}{p \wedge q}}$	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\vdots q \lor r$	$((p \vee q) \wedge (\neg p \vee r)) \Rightarrow (q \vee r)$	Resolution

1. Show that the premises:

- (a) "It is not sunny this afternoon and it is colder than yesterday",
- (b) "We will go swimming only if it is sunny",
- (c) "If we do not go swimming, then we will take a canoe trip", and
- (d) "If we take a canoe trip, then we will be home by sunset"

lead to the conclusion "We will be home by sunset."

TABLE 2 Rules of Inference for Quantified Statements.		
Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
P(c) for an arbitrary $c\therefore \forall x P(x)$	Universal generalization	
$\exists x P(x)$ $\therefore P(c) \text{ for some element } c$	Existential instantiation	
$P(c)$ for some element c $\therefore \exists x P(x)$	Existential generalization	