Derivatives with Direction Review

1. Let h(z,y) = 5000 — 3022 — 10y2.
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(¢) What direction @ would maximize the change in i when at (1,4)?
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Tangent Planes

Recall any of the following could be used Recall any of the following could be used

to describe a line in R?:

y=mx—+b ar +by =c

y =y =m(x —z).

Consider an example of my favorite type
of differential calculus question:

(a) Find the line tangent to the graph of
T
f(z) = tan (§x> when x=1.

(b) Find the local linearization of f when
x =1

(c) Use the linearization of f at z =1 to
approximate f(1.1).

(d) How good is the approximation
above? That is, what is the difference
between your approximation above,
and the actual value f(1.1).
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to describe a plane in R3:

ar+by+cz =d

2= 21 =ma(x — x1) + my(y — y1)-

(a) Find the plane tangent to the graph

1
of f(x,y) = tan (g:t) + — when
)
r=1and y=1.

(b) Find the local linearization of f when
r=1andy=1.

(c) Use the linearization of f at x = 1
and y = 1 to approximate f(1.1,1.1).

(d) How good is the approximation
above? That is, what is the difference
between your approximation above,
and the actual value f(1.1,1.1).



