Series

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let the sequence $a_{n}=\left(\frac{1}{2}\right)^{n}$ and the series $s_{n}=\sum_{i=1}^{n} a_{i}$.
(a) Write down the first 3 terms of a_{n}.
(b) Find $\lim _{n \rightarrow \infty} a_{n}$
(c) Write down the first 3 terms of s_{n}.
(d) Hypothesize $\lim _{n \rightarrow \infty} s_{n}$

Adapted to complement
ViHart's Infinity Elephants video.
(a) Consider the sequence $a_{n}=\frac{1}{3}^{n}$.
(b) Write down a few of the terms in the sequence a_{n}.

We will follow Vi Hart's lead and record the sequence of partial sums by moving nornzontally across the page.
(c) Draw a box (or an elephant) that is $\frac{1}{3}$ units high \& $\frac{1}{3}$ units wide with the lower left "corner" on the origin.
The height will correspond with a_{1} and the total width across the page corresponds with s_{1}.
(d) Draw the second box that has height a_{2} immediately to the right of the box (or elephant) you drew in (b)
 (that is with the lower left "corner" at the point $\left.\left(\frac{1}{3}, 0\right)\right)$.
(e) Identify the length that corresponds with s_{2}.
(f) Draw a third box (or elephant) with height and width a_{3} immediately to the right of the box (or elephant) you drew in (c).
(g) Identify the length that corresponds with s_{3}.
(h) It gets difficult to repeat the procedure for s_{4}, s_{5} and so on, but can you identify $\lim _{n \rightarrow \infty} s_{n}$ is on the graph above?
(i) Just as Vi Hart drew a line that skimmed across the tops of the circles, draw a line that skims the top right hand side of the boxes. Find the equation of the line you just drew.
(j) Find $\lim _{n \rightarrow \infty} s_{n}$

