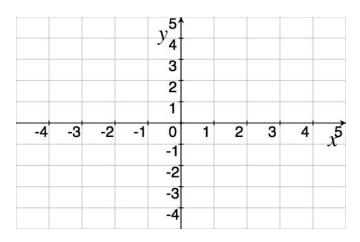
Sequences

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Write out the first few terms of the sequence defined by $a_n = (1 .2^n)$.
- 2. Find a formula for the *n*th term (a_n) in the sequence $\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\}$

A sequence $\{a_n\}$ has a $limit\ L$, denoted $\lim_{n\to\infty} a_n = L$ if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, the sequence converges, otherwise it diverges.

- 3. Revisit #1 and 2 above and determine if the sequence converges or diverges. If the sequence converges, hypothesize what the limit is.
- 4. Recall in #2 you found a formula for a_n . Plot (n, a_n) for a few of the terms in the sequence to confirm your work in (3).



- 5. Let $a_1 = 1$ (an initial condition) and recursively define the sequence $a_n = \frac{a_{n-1}^2}{2}$.
 - (a) Write down the first few terms of the sequence.
 - (b) Determine if the sequence converges or diverges. Yes, this one is harder than (1), just try to make headway.

6. Consider the graph of $f(x) = \sin(x) - x + 1$ graphed below. Use Newton's method to approximate a root. Provide some justification for why you could stop with the recursive method.

