Sequences & Series

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Write out the first few terms of the sequence defined by $a_n = (1 .2^n)$.
- 2. Find a formula for the *n*th term (b_n) in the sequence $\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, ...\}$

A sequence $\{a_n\}$ has a *limit* L, denoted $\lim_{n \to \infty} a_n = L$ if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n \to \infty} a_n$ exists, the sequence *converges*, otherwise it *diverges*.

- 3. Revisit #1 and 2 above and determine if the sequence converges or diverges. If the sequence converges, hypothesize what the limit is.
- 4. Recall in #2 you found a formula for b_n . Plot (n, b_n) for a few of the terms in the sequence to confirm your work in (3).

- 5. Let $\alpha_1 = 1$ (an initial condition) and *recursively* define the sequence $\alpha_n = \frac{\alpha_{n-1}^2}{2}$.
 - (a) Write down the first few terms of the sequence.

(b) Determine if the sequence converges or diverges. Yes, this one is harder than (1), just try to make headway.

- 6. Let the sequence $\beta_n = \left(\frac{1}{2}\right)^n$ and the series $s_n = \sum_{i=1}^n \beta_i$.
 - (a) Write down the first 3 terms of β_n .
 - (b) Find $\lim_{n\to\infty}\beta_n$
 - (c) Write down the first 3 terms of s_n .
 - (d) Hypothesize $\lim_{n\to\infty} s_n$