Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. TRUE/FALSE: Identify a statement as True in each of the following cases if the statement is always true and provide a brief justification. Otherwise, identify it as false and provide a counterexample.
Let \vec{a}, \vec{b}, and \vec{c} be vectors in \mathbb{R}^{3}.
Recall that \cdot refers to the dot product, and \times refers to the cross product.
(a) Let f be a function of x and y. If $\nabla f(c, d)=(2,1)$, then the vector $\langle 2,1\rangle$ is tangent to the contour line of the surface of f at $(c, d, f(c, d))$.
(b) $\int_{-1}^{2} \int_{0}^{6} x^{2} \sin (x-y) d x d y=\int_{0}^{6} \int_{-1}^{2} x^{2} \sin (x-y) d y d x$
(c) $\int_{-1}^{x} \int_{0}^{6} x^{2} \sin (x-y) d x d y=\int_{0}^{6} \int_{-1}^{x} x^{2} \sin (x-y) d y d x$
2. Let f have the contour lines shown on the right.
(a) Estimate $f(2,1)$
(b) Sketch the direction of the vector $\nabla f(2,1)$ on the graph.

(c) Identify one critical point on the graph of f and identify it as a local minimum, maximum or neither.
(d) Let $\vec{u}=\langle 3,-1\rangle$ Determine whether the directional derivative of f at point $(-1,3)$ along \vec{u} is positive, negative, or zero.
Justify your answer.
(e) Estimate the volume bounded by f above the rectangle $3 \leq x \leq 5$ and $0 \leq y \leq 3$. Be clear about what choices you are making to estimate the volume.
3. You are given the following data of a function $g(x, y)$. Your boss wants you to approximate $g(.8,1.4)$ and wants to be convinced you're doing something sophisticated. Find a linear approximation for your boss and explain your choices (there are many that you will make!).

x	y	$g(x, y)$
0.55	1.2	27
0.65	1.0	31
0.65	1.1	29
0.75	1.2	50

4. Consider the double integral

$$
\int_{0}^{1} \int_{\arcsin y}^{\frac{\pi}{2}} \cos (x) \sqrt{1+\cos ^{2} x} d x d y
$$

(a) Sketch the region in the $x y$-plane where the integral is taken over.
(b) Switch the order of integration.
(c) Compute the double integral.

For the following problem you will outline (not actually find!) a solution. Make sure your outline includes:
(a) definitions of variables used,
(b) identifying the function that needs to be optimized,
(c) boxing systems of equations that need to be solved (but do not solve them!), \&
(d) explaining how you would verify your work is correct (ie a maximum)
5. Find the maximum and minimum volumes of a rectangular box with the constraints that the surface area is $1500 \mathrm{~cm}^{2}$ and total edge length is 200 cm .
6. Common blood types are determined by three alleles, A, B, and O. If p is the percent of allele A in the population, q is the percent of allele B in the population and r is the percent of allele O in the population then the proportion of individuals with a mixed blood type (e.g. $A B, A O$ or $B O$) is $P(p, q, r)=2 p q+2 p r+2 q r$. Find the maximal P value.

