Power Series

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let $f(x)=e^{x}$.
(a) Find a third degree polynomial to approximate $f(x)$.
(b) Use the third degree polynomial to approximate $f(.1)$

The $n^{\text {th }}$ Taylor polynomial for f at $c=0$ (also known as Maclaurin Series) is:

$$
\sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(0) x^{i}
$$

The $n^{\text {th }}$ Taylor polynomial for f at c is:

$$
\sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(c)(x-c)^{i}
$$

2. Expand the first three terms in the $n^{\text {th }}$ Taylor polynomial for f at c.
3. Find the 2 nd \& 4th Taylor polynomial of f at $\frac{\pi}{2}$ if we know:
$f\left(\frac{\pi}{2}\right)=1 \quad f^{\prime}\left(\frac{\pi}{2}\right)=0 \quad f^{\prime \prime}\left(\frac{\pi}{2}\right)=-1 \quad f^{(3)}\left(\frac{\pi}{2}\right)=0 \quad f^{(4)}\left(\frac{\pi}{2}\right)=1$
4. Let $g(x)=\ln (x)$. What constant might it make sense to center our Taylor polynomials at? Justify your choice.
