Lines \& Planes

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Some line equations (in 2D):

- Algebra: $y=m x+b \quad y-y_{0}=m\left(x-x_{0}\right) \quad A x+B y+C=0$
- Vectors: Let $t \in \mathbb{R}$, then
- Position Vectors of form: $\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t \vec{v}$
- (Position) Vector Equations: $\langle x, y\rangle=\left(x_{0}+t v_{1}\right)\langle 1,0\rangle+\left(y_{0}+t v_{2}\right)\langle 0,1\rangle$
- Parametric Equations: $x=x_{0}+t v_{1}$ and $y=y_{0}+t v_{2}$
- Symmetric Equations: $\frac{x-x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}$

1. Consider the line L passing through $P(1,2,-1)$ and $Q(2,2,3)$.
(a) Find two equations for L
(b) Where does L intersect the $y z$ plane?

Some Plane equations (in 3D):

- Algebra: $z=z_{0}+m_{x}\left(x-x_{0}\right)+m_{y}\left(y-y_{0}\right) \quad A x+B y+C z+D=0$
- Vectors: Let $t \in \mathbb{R}, s \in \mathbb{R}, \eta=\langle a, b, c\rangle$ and perpendicular to the plane, then
- Position Vectors of form: $\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \vec{v}+s \vec{w}$
- Vector Equations: $\vec{\eta} \cdot\left(\langle x, y, z\rangle-\left\langle x_{0}, y_{0}, z_{0}\right\rangle\right)=0$
- Scalar Form: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$

2. Consider the plane P defined by $3 x-2 y+2 z=6$.
(a) Find where P intersects the $x y$ plane.
(b) Sketch the graph of P.
3. Where does the line $x=y-1=2 z$ intersect the plane $3 x-2 y+2 z=6$?

4. Find the distance from the origin to the plane $3 x-2 y+2 z=6$.
