Calculus on Parametric Equations 3D

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Consider the parametric equation $\vec{r}(t)$ defined by: $x(t)=1+t^{4}, y(t)=t e^{-t}$, and $z(t)=\sin (2 t)$.
(a) Find the line tangent to the curve $\vec{r}(t)$ when $t=0$.
(b) Find $\vec{r}^{\prime \prime}(t)$.

(c) Find $\vec{r}^{\prime}(t) \cdot \vec{r}(t)$.
2. We know $\vec{w}^{\prime}(t)=\sec ^{2}(t) \vec{i}+\frac{1}{1+t^{2}} \vec{j}+0 \vec{k}$. We also know $\vec{w}(0)=3 \vec{k}$. Find $\vec{w}(t)$.
3. Let $\vec{q}(t)=\left(e^{t} \sin (t)\right) \vec{i}+\left(e^{t} \cos (t)\right) \vec{j}+0 \vec{k}$.
(a) Find $\vec{q}^{\prime}(\pi)$.
(b) Find $\vec{q}^{\prime \prime}(\pi)$.
(c) Find the angle between $\vec{q}^{\prime}(\pi)$ and $\vec{q}^{\prime \prime}(\pi)$.
