3D Integration

$f(x, y)$ on rectangle $R=[a, b] \times[c, d]=$ $f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y$ little bit of volume

Double Riemann Sum If $f(x, y) \geq 0$ the double Riemann sum approximates the volume under the surface.

(a) $n=16$

(b) $n=64$
$\iint_{R} f(x, y) d A=\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A$

(c) $n=256$

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let R be the rectangle $1 \leq x \leq 1.2$ and $2 \leq y \leq 2.4$. If the values for $f(x, y)$ are as specified below, find a Riemann sum approximation for $\iint_{R} f(x, y) d A$ with $\Delta x=0.1$ and $\Delta y=0.2$.

$y \backslash x$	1.0	1.1	1.2
2.0	5	7	10
2.2	4	6	8
2.4	3	5	6

2. Calculate $\int_{0}^{4} \int_{0}^{3} 4 x+3 y d y d x$

Fubini Theorem: If f is continous on the rectangle $R=\left\{(x, y) \mid a^{6} x \leq b, c \leq y \leq d\right\}$, then $\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$

To calculate the area of the vertical slice: To calculate the area of the vertical slice:

$$
A(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y \quad A(y)=\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x
$$

Then sum the slices as x goes from a to b : Then sum the slices as y goes from c to d :

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \quad \iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

3. For the region sketched below create a double integral to calculate the area of the region R.

