3D Integration

Recall the definition of the definite integral of a function of a single variable:

Let f(x) be defined on [a, b] and let x_0, x_1, \ldots, x_n be a partition of [a, b]. For $i = 1, 2, \ldots, n$, let $x_i^* \in [x_{i-1}, x_i]$. Then

Double Riemann Sum If $f(x, y) \ge 0$ the double Riemann sum approximates the volume under the surface.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Let R be the rectangle $1 \le x \le 1.2$ and $2 \le y \le 2.4$. If the values for f(x, y) are as specified below, find a Riemann sum approximation for $\iint_R f(x, y) dA$ with $\Delta x = 0.1$ and $\Delta y = 0.2$.

$y \setminus x$	1.0	1.1	1.2
2.0	5	7	10
2.2	4	6	8
2.4	3	5	6

2. Calculate $\int_0^4 \int_0^3 4x + 3y \, dy \, dx$

Fubini Theorem: If f is continous on the rectangle $R = \{(x, y) | a x \le b, c \le y \le d\}$, then $\iint_R f(x, y) dA = \int_a^b \int_c^d f(x, y) dy dx = \int_c^d \int_a^b f(x, y) dx dy$