Dot Products

Some Properties: If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are vectors in a vectors space V, and c is a scalar, then

• $\overrightarrow{a} \cdot \overrightarrow{a} = ||\overrightarrow{a}||^2$ • $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ • $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$ • $(c\overrightarrow{a}) \cdot \overrightarrow{b} = c(\overrightarrow{a} \cdot \overrightarrow{b}) = \overrightarrow{a} \cdot (c\overrightarrow{b})$ • $\overrightarrow{0} \cdot \overrightarrow{a} = \overrightarrow{0}$

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Let $\overrightarrow{v} = 2\overrightarrow{i} + 2\overrightarrow{j} \overrightarrow{k}$ and $\overrightarrow{w} = \langle 3, -2 \rangle$. Find (if possible):

(a)
$$(\overrightarrow{v} \cdot \overrightarrow{j}) \cdot \overrightarrow{k}$$

(b) $||\overrightarrow{v}||$

(c)
$$\overrightarrow{v} \cdot \overrightarrow{w}$$

2. For each \overrightarrow{v} and \overrightarrow{w} , determine if the two vectors are parallel, perpendicular, or neither. Note that "orthogonal" and "normal" are alternatives to the word "perpendicular".

•
$$\overrightarrow{v} = \langle 2, 2, -1 \rangle$$
 and $\overrightarrow{w} = \langle 5, -4, 2 \rangle$

• $\overrightarrow{v} = \langle 3, 7, -\frac{1}{2} \rangle$ and $\overrightarrow{w} = \langle -1, -\frac{7}{3}, \frac{1}{6} \rangle$

Cross Products

- 3. Find the following
 - $\overrightarrow{j} \times \overrightarrow{i}$
 - $\overrightarrow{3i} \times \overrightarrow{j}$
- 4. Cross product shows up in mechanics as torque τ . Specifically, $\tau = \overrightarrow{r} \times \overrightarrow{F}$ where \overrightarrow{F} is the force applied at a radius of \overrightarrow{r} .

Find the torque applied to a bolt if 50 lbs of vertical force is applied to the end of a 1 foot wrench attached to an axle with an angle of inclination of 60° .

Some nice properties of cross products: If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are vectors and c is a scalar, then

- $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$
- $(c\overrightarrow{a}) \times \overrightarrow{b} = c(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (c\overrightarrow{b})$
- $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$
- $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$
- $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$
- $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$