Dot Products

Some Properties: If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are vectors in a vectors space V, and c is a scalar, then

- $\overrightarrow{a} \cdot \overrightarrow{a} = ||\overrightarrow{a}||^2$ • $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ • $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$
- $(c\overrightarrow{a})\cdot\overrightarrow{b} = c(\overrightarrow{a}\cdot\overrightarrow{b}) = \overrightarrow{a}\cdot(c\overrightarrow{b})$

•
$$\overrightarrow{0} \cdot \overrightarrow{a} = \overrightarrow{0}$$

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let
$$\overrightarrow{v} = 2\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$$
 and $\overrightarrow{w} = \langle 3, -2 \rangle$. Find (if possible):
(a) $(\overrightarrow{v} \cdot \overrightarrow{j}) \cdot \overrightarrow{k}$

(b) $||\overrightarrow{v}||$

(c)
$$\overrightarrow{v} \cdot \overrightarrow{w}$$

2. For each \overrightarrow{v} and \overrightarrow{w} , determine if the two vectors are parallel, perpendicular, or neither. Note that "orthogonal" and "normal" are alternatives to the word "perpendicular".

•
$$\overrightarrow{v} = \langle 2, 2, -1 \rangle$$
 and $\overrightarrow{w} = \langle 5, -4, 2 \rangle$

•
$$\overrightarrow{v} = \langle 3, 7, -\frac{1}{2} \rangle$$
 and $\overrightarrow{w} = \langle -1, -\frac{7}{3}, \frac{1}{6} \rangle$

3. Consider a 10 gram block on a ramp that has a 30° angle of elevation. What force must friction have to keep the block from moving?