Dot Products

Some Properties: If \vec{a}, \vec{b} and \vec{c} are vectors in a vectors space V, and c is a scalar, then

- $\vec{a} \cdot \vec{a}=\|\vec{a}\|^{2}$
- $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
- $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
- $(c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b})$
- $\overrightarrow{0} \cdot \vec{a}=\overrightarrow{0}$

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let $\vec{v}=2 \vec{i}+2 \vec{j}-\vec{k}$ and $\vec{w}=\langle 3,-2\rangle$. Find (if possible):
(a) $(\vec{v} \cdot \vec{j}) \cdot \vec{k}$
(b) $\|\vec{v}\|$
(c) $\vec{v} \cdot \vec{w}$
2. For each \vec{v} and \vec{w}, determine if the two vectors are parallel, perpendicular, or neither. Note that "orthogonal" and "normal" are alternatives to the word "perpendicular".

- $\vec{v}=\langle 2,2,-1\rangle$ and $\vec{w}=\langle 5,-4,2\rangle$
- $\vec{v}=\left\langle 3,7,-\frac{1}{2}\right\rangle$ and $\vec{w}=\left\langle-1,-\frac{7}{3}, \frac{1}{6}\right\rangle$

3. Consider a 10 gram block on a ramp that has a 30° angle of elevation. What force must friction have to keep the block from moving?
