Cross Products

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Find the following

- $\vec{j} \times \vec{i}$
- $\overrightarrow{3 i} \times \vec{j}$

2. Find a unit vector orthogonal to both $\vec{i}+\vec{j}+\vec{k}$ and $2 \vec{i}+\vec{k}$.
3. Find the angle between $\langle 1,-1,-1\rangle$ and $\langle 1,-1,-1\rangle \times\left\langle\frac{1}{2}, 1, \frac{1}{2}\right\rangle$.

Some nice properties of cross products: If \vec{a}, \vec{b}, and \vec{c} are vectors and c is a scalar, then

- $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
- $(c \vec{a}) \times \vec{b}=c(\vec{a} \times \vec{b})=\vec{a} \times(c \vec{b})$
- $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
- $(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$
- $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}$
- $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

4. Find the area of the triangle $P Q R$ if $P(0,-2,0), Q(4,1,-2)$, and $R(5,3,1)$.
5. Cross product shows up in mechanics as torque τ. Specifically, $\tau=\vec{r} \times \vec{F}$ where \vec{F} is the force applied at a radius of \vec{r}.
Find the torque applied to a bolt if 50 lbs of vertical force is applied to the end of a 1 foot wrench attached to an axle with an angle of inclination of 60°.
