Sequence Practice

1. Consider the sequence: $\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, ...\}$

(a) Find a formula for the general term a_n of the sequence.

(b) Determine if the sequence converges or diverges. Justify your answer.

 (c) Plot (n, a_n) for a few of the terms in the sequence to confirm your work in (b). 					y ₄ 3 2 1					
	-4	-3	-2	-1	0	1	2	3	4	,5
					-1					л
					-2					
					-3					
					-4					

2. Let $a_1 = 1$ (an initial condition) and *recursively* define the sequence $a_n = \frac{a_{n-1}^2}{2}$.

- (a) Write down the first few terms of the sequence.
- (b) Determine if the sequence converges or diverges. Yes, this one is harder than (1), just try to make headway.

Note: When a_n depends on any term previous, we call the sequence, recursively defined.

Cobwebbing Sequences

Adapted from homework created by Jonny Comes.

1. Consider the recursive sequence defined by $a_n = 4a_{n-1} - (a_{n-1})^2$. Identify the recursive function R(x) and *carefully* graph R on the graph provided.

				v					
				⁷ 4					
				3					
				2					
				1			2		
-4	-3	-2	-1	0	1	2	3	4	1
				-1					~
				-2					
				-3					
				-4					

- (a) Use cobwebbing to write down a few terms of the sequence if $a_1 = 3$ and determine if the sequence converges.
- (b) Use cobwebbing to write down a few terms of the sequence if $a_1 = 2$ and determine if the sequence converges.
- (c) Use cobwebbing to write down a few terms of the sequence if $a_1 = -.5$ and determine if the sequence converges.
- (d) Use cobwebbing to write down a few terms of the sequence if $a_1 = .5$ and determine if the sequence converges.
- (e) Find an initial value for a_1 (or a range of initial values) so that the resulting recursively defined sequence will converge to 3.