Three-Dimensions

Conventions:

- The direction of the z-axis is determined by the right-hand rule: if you curl the fingers of your right hand around the z-axis in the direction of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, then your thumb points in the positive direction of the z-axis. Note, picture from Stewart's text.
- When drawing axis, the arrows denote the positive side of an axes.

(Some of the) Things we can do with Vectors (\vec{u}, \vec{v}):
Add Scale Subtract Find the Length/Magnitude: $\|\vec{v}\|$

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. For each of the following set of axis below, identify the positive z-axis:

2. Identify the $y z$ plane on the axis in the middle.

Let $A=(0,0,0), B=(1,2,3), \& C=(0,-2,1)$
3. Use the coordinate axis provided for:
(a) Plot the points $A, B, \& C$

Note that the points plotted in part (a) cast 'shadows' on the $x y$-plane. That is, if we drop a perpendicular from a point $P=(a, b, c)$ to the $x y$-plane, the point $Q=(a, b, 0)$ is the projection of P to the $x y$-plane.

(b) Find the $y z$-plane projections of the three points you plotted in part (a).
(c) Find the distance between the points A and B.
4. Plot the vectors $\overrightarrow{A B}$ and $\overrightarrow{C A}$ on the axis above.

Notation: vectors \vec{v} that move a units in the x direction, b in the y direction, and c in the z direction can be denoted, $\langle a, b, c\rangle$. These are the components of \vec{v}.
5. Write the components of $\overrightarrow{A B}$ and $\overrightarrow{C A}$
6. Plot the vector \vec{i}

