Tangent Planes of 3D functions

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

§14.4 Tangent Lines \& Planes

Recall any of the following could be used to describe a line in \mathbb{R}^{2} :

$$
\begin{gathered}
y=m x+b \quad a x+b y=c \\
y-y_{1}=m\left(x-x_{1}\right) .
\end{gathered}
$$

Consider an example of my favorite type of differential calculus question:

1. Find the line tangent to the graph of $f(x)=2 x^{2}$ when $\mathrm{x}=1$.
2. Find the local linearization of f when $x=1$.
3. Use the linearization of f at $(1,2)$ to approximate $f(1.1)$.
4. How good is the approximation above? That is, what is the difference between your approximation above, and the actual value $f(1.1)$.
5. Find the plane tangent to the graph of $f(x, y)=2 x^{2}+y^{2}$ when $x=1$ and $y=1$.
6. Find the local linearization of f when $x=1$ and $y=1$.
7. Use the linearization of f at $(1,1,3)$ to approximate $f(1.1,1.1)$.
8. How good is the approximation above? That is, what is the difference between your approximation above, and the actual value $f(1.1,1.1)$.
