3D Parametric Equations

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

2. Find a function to describe the intersection of the surface $\frac{x^2}{12} + \frac{y^2}{24} + \frac{z^2}{4} = 1$ and the parabolic cylinder $y = x^2$.

Let $\overrightarrow{r}(t) = f(t)\overrightarrow{i} + g(t)\overrightarrow{j} + h(t)\overrightarrow{k}$. Let $\overrightarrow{u}(t)$ also be a vectored value function, then

- $\lim_{t \to a} \overrightarrow{r}(t) = \left(\lim_{t \to a} f(t)\right) \overrightarrow{i} + \left(\lim_{t \to a} g(t)\right) \overrightarrow{j} + \left(\lim_{t \to a} h(t)\right) \overrightarrow{k}$
- $\overrightarrow{r}(t)$ is continuous at a if $\lim_{t \to a} \overrightarrow{r}(t) = \overrightarrow{r}(a)$
- $\overrightarrow{r'}(t) = \lim_{\Delta t \to 0} \frac{\overrightarrow{r'}(t + \Delta t) \overrightarrow{r'}(t)}{\Delta t} = f'(t)\overrightarrow{i} + g'(t)\overrightarrow{j} + h'(t)\overrightarrow{k}$
- $\frac{d}{dt}(\overrightarrow{r}(t) \cdot \overrightarrow{u}(t)) = \overrightarrow{r}(t) \cdot \overrightarrow{u'}(t) + \overrightarrow{r'}(t) \cdot \overrightarrow{u}(t)$ • $\frac{d}{dt}(\overrightarrow{r}(t) \times \overrightarrow{u}(t)) = \overrightarrow{r}(t) \times \overrightarrow{u'}(t) + \overrightarrow{r'}(t) \times \overrightarrow{u}(t)$

3D Calculus with Parametric Equations

3. Consider the parametric equation $\overrightarrow{r}(t)$ defined by: $x(t) = 1 + t^4$, $y(t) = te^{-t}$, and $z(t) = \sin(2t)$.

(a) Find the line tangent to the curve $\overrightarrow{r}(t)$ when t = 0.

(b) Find $\overrightarrow{r}''(t)$.

(c) Find $\overrightarrow{r}'(t) \cdot \overrightarrow{r}(t)$.

4. We know $\overrightarrow{w}'(t) = \sec^2(t)\overrightarrow{i} + \frac{1}{1+t^2}\overrightarrow{j} + 0\overrightarrow{k}$. We also know $\overrightarrow{w}(0) = 3\overrightarrow{k}$. Find $\overrightarrow{w}(t)$.

