Optimizing in 3D

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Some familiar definitions:

- A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ when (x, y) is near (a, b). The number $f(a, b)$ is called a local maximum value.
- A function of two variables has a local minimum at (a, b) if $f(a, b) \leq f(x, y)$ when (x, y) is near (a, b). The number $f(a, b)$ is called a local minimum value.
- Let (a, b) be a point in the domain D of a function f or two variables. Then $f(a, b)$ is the absolute maximum value of f on D if $f(x, y) \leq f(a, b)$ for all (x, y) in D.
- Let (a, b) be a point in the domain D of a function f or two variables. Then $f(a, b)$ is the absolute minimum value of f on D if $f(a, b) \leq f(x, y)$ for all (x, y) in D.

1. Consider the graph $f(x, y)$ whose contour lines are shown below.
(a) Estimate the critical points on the graph.
(b) Classify each critical point as a local maximum, local minimum, or neither.

(c) Estimate the absolute maximum value of f.

Second Derivative Test: Suppose the second partial derivative of f are continuous on a disk with center (a, b), and that (a, b) is a critical point. Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

- If $0<D$ and $0<f_{x x}(a, b)$, then $f(a, b)$ is a local minimum value.
- If $0<D$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum value.
- If $D<0$ then (a, b) is a saddle point of f.

2. Find the local maximum values of $f(x, y)=-x^{3}+4 x y-2 y^{2}+1$
3. Find x, y, and z so that the sum is 42 and the sum of squares is a minimum.
