Three-Dimensions

Conventions:

- The direction of the z-axis is determined by the right-hand rule: if you curl the fingers of your right hand around the z-axis in the direction of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, then your thumb points in the positive direction of the z-axis. Note, picture from Stewart's text.
- When drawing axis, the arrows denote the positive side of an axes.

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. For each of the following set of axis below, identify the positive z-axis:

2. Identify the $x y$ plane on the the axis on the far left.
3. Identify the $y z$ plane on the axis in the middle.
4. Use the coordinate axis provided on the right for the following questions:
(a) Plot the points (with rectangular coordinates)
$A=(0,0,0)$,
$B=(1,2,3), \&$
$C=(0,-2,1)$.
Note that the points plotted in part (a) cast 'shadows' on the $x y$-plane. That is, if we drop a perpendicular from a point $P=(a, b, c)$ to the $x y$-plane, the point $Q=(a, b, 0)$ is the projection of P to the $x y$-plane.

(b) Find the $x y$-plane projections for each of the three points you plotted in part (a). Graph the projections and explain why I described these projections as 'shadows'.
(c) Find the $y z$-plane projections of the three points you plotted in part (a).
(d) Find the distance between the points A and B.
(e) Find the distance between points B and C.
