Parametric Equations

1. Consider the parametric equations $x(t)=t^{2}-4$ and $y(t)=\frac{t}{2}$.
(a) Find the point on the plane curve when $t=0$.

(b) Sketch the graph of the plane curve as t varies from -2 to 3 .
2. Eliminate the parameter in the parametric equations $x(t)=t^{2}-4$ and $y(t)=\frac{t}{2}$ to write the 'rectangular form' of the equation your graphed above.

Calculus with Parametric Equations

3. Consider the parametric equations $x(t)=(t-\sin (t))$ and $y(t)=(1-\cos (t))$. Find where the plane curve has a horizontal tangent line. Make sure that you have found them all!
4. Recall how we can use integral calculus to find the arc length of function by summing all the small line segments and then taking a limit as the $\delta x \rightarrow 0$.

In more detail: $s \approx \sum_{i=1}^{n} \sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}$ where $\Delta x_{i}=x_{i}-x_{i-1}$.
Then through a bit of algebra (multiplying $\left(\Delta y_{i}\right)^{2}$ by $\left(\Delta x_{i}\right)^{2} /\left(\Delta x_{i}\right)^{2}$ mixed with some factoring), we find $s \approx \sum_{i=1}^{n} \sqrt{1+\left(\Delta y_{i} / \Delta x_{i}\right)^{2}} \Delta x_{i}$.
Once we take the limit we have $s=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

