Trigonometric Substitution

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let $x=3 \sin (\theta)$. Find the following in terms of x.
$\sin (\theta)$
θ
$\cos (\theta)$
2. Let $x=2 \tan (\theta)$. Find the following in terms of x.
$\tan (\theta)$
$\cos (\theta)$
$\sec (\theta)$
3. Let $2 x=3 \tan (\theta)$. Find the following in terms of x.

Expression	Substitution	Restrictions	Reason
$\sqrt{a^{2}-x^{2}}$	$x=a \sin (\theta)$	$\frac{-\pi}{2} \leq \theta \leq \frac{-\pi}{2}$	$1-\sin ^{2}(\theta)=\cos ^{2}(\theta)$
	OR $x=a \cos (\theta)$	$0 \leq \theta \leq \pi$	$1-\cos ^{2}(\theta)=\sin ^{2}(\theta)$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan (\theta)$	$\frac{-\pi}{2} \leq \theta \leq \frac{-\pi}{2}$	$1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec (\theta)$	$0 \leq \theta \leq \pi$	$\sec ^{2}(\theta)-1=\tan ^{2}(\theta)$

4. Find $\int \frac{x}{\left(4 x^{2}+9\right)^{\frac{3}{2}}} d y$
