Antiderivatives

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Find an antiderivative for each of the following:
$2 x+1$
$x^{2}-e^{x}$

$$
\sin (x)
$$

2. Find the most general antiderivative for each of the following:
$\frac{-1}{x^{2}}$
$\frac{1}{x}$
$\frac{2 x^{5}-\sqrt{x}}{x}$
3. Evaluate:

$$
\int_{0}^{1} x^{2} d x \quad \int_{2}^{6} \frac{1}{u} d u \quad \int_{-1}^{3} \frac{1}{x^{2}} d x
$$

Mean Value Theorem (Integral Version!): y \boldsymbol{y} If f is continuous on the closed interval $[a, b]$, then there exists a number c in the closed interval $[a, b]$ such that
$\int_{a}^{b} f(x) d x=f(c)(b-a)$

Average Value of a Function on an Interval: If f is integrable on the closed interval $[a, b]$, then the average value of f on the interval is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

4. Find the average value of the function: $f(x)=3 x^{2}-2 x$

You can check your answer above by looking at example 4 on page 317 .

