## Differential Equations

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Consider $\frac{d P}{d t}=1.2 P\left(1-\frac{P}{4200}\right)$
where $P$ denotes a non-negative population as a function of $t$.
(a) Is the above equation a differential equation?
(b) For what $P$ values is the population increasing?
(c) For what $P$ values is the population decreasing?
(d) Which of the below graphs could be a graph of $P$ as a function of time?

(e) Are there any populations where the population seems to stabilize?
(These are called equilibrium solutions.)
(f) If you also knew that $P(0)=2500$, which of the graphs above could be a solution to the initial value problem?

Note, the solution to this differential equation is common/famous enough to have a name: a logistic equation.
2. Let $\frac{d y}{d x}=2 e^{x}-2 y$. Which of the graphs below could be a graph of $y$ ?

3. Match the differential equations with the solutions graphs labeled I-IV.
(a) $y^{\prime}=1+x^{2}+y^{2}$
(b) $y^{\prime}=x e^{-x^{2}-y^{2}}$
(c) $y^{\prime}=\frac{1}{1+e^{x^{2}+y^{2}}}$
(d) $y^{\prime}=\sin (x y) \cos (x y)$

II




