Differential Equations

1. Show for any constant c, that $y=\frac{1+c r^{t}}{1-c e^{t}}$ is a solution to the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$.
2. Match the differential equations with the solutions graphs labeled I-IV.
(a) $y^{\prime}=1+x^{s}+y^{2}$
(b) $y^{\prime}=x e^{-x^{2}-y^{2}}$
(c) $y^{\prime}=\frac{1}{1+e^{x^{2}+y^{2}}}$
(d) $y^{\prime}=\sin (x y) \cos (x y)$

II

Check your answers on the front page by consulting Example 1 on page 583 and looking at the answer to 13 in $\S 9.1$.
3. Consider the differential equation $y^{\prime}=x+y$.
(a) Sketch a direction field for the above differential equation.
(b) Sketch a solution to the above differential equation if you know when $x=0$ that $y=1$.

