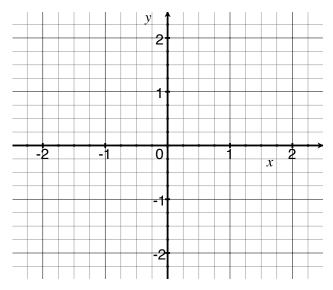

Differential Equations

1. Show for any constant c, that $y = \frac{1 + cr^t}{1 - ce^t}$ is a solution to the differential equation $y' = \frac{1}{2}(y^2 - 1).$


2. Match the differential equations with the solutions graphs labeled I-IV.

(a)
$$y' = 1 + x^{s} + y^{2}$$

(b) $y' = xe^{-x^{2}-y^{2}}$
(c) $y' = \frac{1}{1 + e^{x^{2}+y^{2}}}$
(d) $y' = \sin(xy)\cos(xy)$

Check your answers on the front page by consulting Example 1 on page 583 and looking at the answer to 13 in $\S9.1$.

- 3. Consider the differential equation y' = x + y.
 - (a) Sketch a direction field for the above differential equation.
 - (b) Sketch a solution to the above differential equation if you know when x = 0 that y = 1.

