Derivatives of Products \& Quotients

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let f be the function graphed on the left and g be the function graphed on the right.

Estimate the following (if possible):
$(f \cdot g)^{\prime}(-1)$
$(f g)^{\prime}(1)$

$$
\left.\frac{d}{d x}(f g)\right|_{x=0}
$$

$(g \cdot f)^{\prime}(2)$
2. Find:
$\left.\frac{d}{d x}\left(\frac{f}{g}\right)\right|_{x=1}$

Chain Rule

3. Things we know about the gears:

- This is in 3D, the axles come out of the page towards us.
- Gear B \& C are on the same axle.
- Circumference C is computed by $2 \pi r$ and r is in the picture.

$$
\begin{aligned}
& -C_{B}=3 * C_{A} \rightarrow ? ? \\
& -C_{D}=2 C_{C} \rightarrow ? ?
\end{aligned}
$$

- Let $y=\#$ of rev $/ \mathrm{min}$. of Axle A
- Let $u=\#$ of rev/min. of Axle B
- Let $x=\#$ of rev/min. of Axle C

- Find $\frac{d y}{d u}$
$\frac{d u}{d x}$

$$
\frac{d y}{d x}
$$

4. For each f defined below, find $f^{\prime}(x)$.

$$
f(x)=e^{x^{5}} \quad f(x)=\frac{1}{1+x^{3}}
$$

5. Let $F=f(g(x))$ where f and g are graphed on the front of this Activity.
(a) Find $F^{\prime}(3)$.
(b) Find the equation of the line tangent to F at $x=3$.
