Derivatives of Products & Quotients with Trig.

1. Let f be the function graphed on the left and g be the function graphed on the right.

Estimate the following (if possible):

 $(f \cdot g)'(-1)$

 $\frac{d}{dx}(fg)|_{x=0}$

(f	(q)	'(1)
$\langle J$	J	(-	

 $(g \cdot f)'(3)$

2. Find:

$$\frac{d}{dx}\left(\frac{e^x}{x}\right)$$
 $\left(x^3\sin(x)\right)'$
 $\frac{d}{dx}\left(ex^2\right)$

3. Find:

$$\frac{d}{dx} \left(\frac{e^x}{3x+2} \right) \qquad \left(\frac{3x^2 - \sqrt{x}}{x} \right)'$$

4. Use the fact that $\sec(x) = \frac{1}{\cos(x)}$ and $[\cos(x)]' = -\sin(x)$ to compute $[\sec(x)]'$. That is, convince yourself that you don't need to memorize the derivative of $\sec(x)$, but can derive it when you need it.

5. Find an equation of the tangent line to the curve $y = \frac{e^x}{1+x^2}$ at the point $(1, \frac{1}{2}e)$.