FINAL

Note: This is a practice final and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. [] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f and g be differentiable functions and h be a constant.

T $\quad \mathrm{F} \quad \frac{x+h}{2 x}=\frac{1+h}{x}$
T $\quad \mathrm{F} \quad \sqrt{x^{2}+h^{2}}=x+h$
T $\quad \mathrm{F} \quad \lim _{x \rightarrow r} f(x)=f(r)$ for all r in the domain of f.
T F If $\lim _{x \rightarrow r} g(x)=0$, then $\lim _{x \rightarrow r} \frac{f(x)}{g(x)}$ does not exist.
$\mathrm{T} \quad \mathrm{F} \quad \frac{d}{d x}\left(\frac{1}{x}\right)=-1$
Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [] Sketch the graph and then find the formula of an example function f that satisfies the following conditions:
(a) $f(2)=2$
(b) $\lim _{x \rightarrow 2} f(x)=-4$
(c) f is not differentiable when $x=-3$
(d) f is continuous when $x=-3$
(e) $\lim _{x \rightarrow 0^{+}} f(x)=\infty$
(f) $f^{\prime}(4)=2$

3. Compute the following limits:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{2 x^{2}-8 x+6}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-2}{2 x^{2}-8 x+6}$
(c) $\lim _{\theta \rightarrow 0^{+}} \frac{\theta+\theta^{2}}{1-\cos \theta}$
(e) $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$
(d) $\lim _{x \rightarrow \infty} x \sin \left(\frac{5 \pi}{x}\right)$
(f) $\lim _{x \rightarrow 1} \frac{1}{x-1}$
4. Let $f(x)= \begin{cases}\sqrt{1-(x+3)^{2}} & \text { if }-4 \leq x \leq-2 \\ 1 & \text { if }-2<x<1 \\ -(x-2)^{2}+2 & \text { if } 1<x\end{cases}$

Graph $f(x)$ and then sketch the graph $f^{\prime}(x)$ below on its own set of axes. Afterwards, answer the following questions.
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow 3}[4 f(x)-7]$
(c) $\lim _{x \rightarrow-2} f(x)$

(d) $\lim _{x \rightarrow-2^{-}} f(x)$
(e) $\lim _{x \rightarrow 3} f^{\prime}(x)$
(f) $\lim _{x \rightarrow \infty} f(x)$
(g) $[f+f]^{\prime}(2)$

5. Compute the derivatives of the following functions. You do not need to simplify.
(a) $f(x)=x^{3}+3^{x}+\pi^{\pi}$
(b) $g(t)=\ln (t)\left(\frac{2+t^{2}}{3 t-1}\right)$
(c) $h(\theta)=7 \sec (\sqrt{\theta})$
(d) $y=\sqrt{x} e^{x^{7}}\left(x^{6}+3\right)^{10}$
(c) $y=(\cos (x))^{x}$
(d) $x^{2} y^{2}=4-y \arctan (5 x)$
6. Find the equation of the line tangent to the graph of f when $x=2$ if $f(x)=m(n(x))$, $n(2)=-1, m(-1)=6, n^{\prime}(2)=3$, and $m^{\prime}(-1)=5$.
7. Find the antiderivative for each of the following functions:
(a) $2 x-x^{3}+7 \sin (x)$
(b) $\frac{5-4 x^{3}+2 x^{6}}{x^{6}}$
8. Consider the function $f(x)=\sqrt[3]{x}$
(a) Evaluate the integral $\int_{1}^{8} \sqrt[3]{x} d x$
(b) Draw a picture that corresponds to the area you computed in (a).
9. Find the linearization of $f(x)=\frac{1}{\sqrt{x}}$ that is parallel to the line $y-3=\frac{-27}{2}(x+5)$
10. Consider the graph of $f(x)=x^{3}-2 x^{2}-3 x+2$ graphed to the right..
(a) [3] (favorite problem!) Find the equation of the line tangent to the graph of f when $x=-1$.

(b) [2] Use linear approximation to estimate the negative root of f.
11. A photographer is taking a picture of a 4 -foot painting hung in an art gallery. The camera lens (positioned on a tripod) is 1 foot below the lower edge of the painting. How far should the camera be from the painting to maximize the angle subtended by the camera lens?
12. (WebHW11 \#9) A patrol car is parked 50 feet from a building shown to the right. The revolving light on top of the car turns at a rate of 8 revolutions per minute.
(a) [1] Find θ as a function of x.

(b) [3] Find how fast the light beam is moving along the wall when the beam makes and angle of 30° with the building wall.
13. Find the dimensions of the rectangle of largest area that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y=7-x^{2}$
14. A truck has a minimum speed of 9 mph in high gear. When traveling x mph , the truck burns diesel fuel at the rate of

$$
0.003935\left(\frac{675}{x}+x\right) \frac{\text { gal }}{\text { mile }}
$$

Assume that the truck can not be driven over 63 mph , that diesel fuel costs $\$ 2.84 \mathrm{a}$ gallon, and that the driver is paid $\$ 12$ an hour. Find the speed that will minimize the cost of a 500 mile trip.

