Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. Find both the following:

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{6 x}
$$

$$
\left(\frac{\sin (4 x)}{6 x}\right)^{\prime}
$$

2. Sketch the graph of an example function f that satisfies the following conditions:
(a) f is not differentiable when $x=-3$
(b) f is
continuous
when $x=-3$
(c) $f(1)=-4$
(d) $\lim _{x \rightarrow 1} f(x)=2$
(e) $f^{\prime}(3)=-\frac{1}{2}$
(f) $\lim _{x \rightarrow-1^{+}} f(x)=0$
(g) $\lim _{x \rightarrow-1^{-}} f(x)=1$

3. Find a formula for the function f you drew in problem (2).
4. Identify which derivative rule(s) you can use to find $\frac{d y}{d x}$. Do not find $\frac{d y}{d x}$!!

	Derivative Rule(s)
$y=\sqrt{\frac{x-1}{x^{4}+1}}$	
$y+x 4^{y}=x^{9}$	
$y=e^{x^{3}-5 x}$	
$y=(\tan (x))^{x}$	

5. Use the graphs of f and g below for the following questions.

(a) Find an x so that $g^{\prime}(x)$ does not exist.
(b) Estimate $\left.\frac{d}{d x}(f(x) g(x))\right|_{x=0}$
(c) If $c(x)=f(g(x))$, then estimate $c^{\prime}(4)$.
(d) If $h(x)=g(3 x-1)$, then estimate $h^{\prime}(2)$.
6. The differentiable functions f and g are defined for all real numbers. Values for f, f^{\prime}, g, and g^{\prime} for various x values are given in the table.
(a) Given that $h(x)=\frac{f(x)}{2 x+g(x)}$, find $h^{\prime}(1)$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	4	2	6
2	1	5	8	7
3	7	7	2	9

(b) Find the linearization of f at $x=2$.
(c) Use the linearization of f to approximate $f(2.05)$.
7. A particle moves along a hyperbola $x y=4$ when $x>0$. The graph is shown below with a solid curve. The dotted line is of a dust particle moving along a straight line.
(a) Find the point that the particle's movement is parallel to a dust particle moving along the dotted straight line graphed.

(b) When the particle reaches an x value of 1 , the y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate of the point changing at that instant?
8. Ryan and Stella were being chased by a pack of zombies. At point P they decided to split up and Stella ran south at $12 \mathrm{ft} / \mathrm{s}$. Ryan waited for ten seconds to try to draw most of the zombies towards him and then started to run east at $15 \mathrm{ft} / \mathrm{s}$. One minute later the two of them are still alive and running in their respective directions. At what rate are Ryan and Stella moving apart at this instant?

