TMath 124

Practice

Show *all* your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. Find both the following:

$$\lim_{x \to 0} \frac{\sin(4x)}{6x}$$

EXAM 2

$$\left(\frac{\sin(4x)}{6x}\right)'$$

2. Sketch the graph of an example function f that satisfies the following conditions:

(a) f is not differentiable when $x = -3$					$y_{4}^{5\uparrow}$					
(b) f is					3					
continuous					2					
when $x = -3$					1					
(c) $f(1) = -4$	-1	2	-2	-1	0	-	2	3	1	F
(d) $\lim_{x \to 1} f(x) = 2$	-4	-3	-2	-	-1		2	3	4	x
(e) $f'(3) = -\frac{1}{2}$					-2					
(f) $\lim_{x \to -1^+} f(x) = 0$					-3					
(g) $\lim_{x \to -1^{-}} f(x) = 1$					-4					

3. Find a formula for the function f you drew in problem (2).

4. Identify which derivative rule(s) you can use to find $\frac{dy}{dx}$. Do not find $\frac{dy}{dx}$!!

	Derivative Rule(s)
$y = \sqrt{\frac{x-1}{x^4+1}}$	
$y + x4^y = x^9$	
$y = e^{x^3 - 5x}$	
$y = (\tan(x))^x$	

5. Use the graphs of f and g below for the following questions.

- (a) Find an x so that g'(x) does not exist.
- (b) Estimate $\frac{d}{dx}(f(x)g(x))|_{x=0}$

(c) If c(x) = f(g(x)), then estimate c'(4).

(d) If h(x) = g(3x - 1), then estimate h'(2).

- 6. The differentiable functions f and g are defined for all real numbers. Values for f, f', g, and g' for various x values are given in the table.
 - (a) Given that $h(x) = \frac{f(x)}{2x+g(x)}$, find h'(1).

x	f(x)	f'(x)	g(x)	g'(x)
1	3	4	2	6
2	1	5	8	7
3	7	7	2	9

- (b) Find the linearization of f at x = 2.
- (c) Use the linearization of f to approximate f(2.05).
- 7. A particle moves along a hyperbola xy = 4 when x > 0. The graph is shown below with a solid curve. The dotted line is of a dust particle moving along a straight line.
 - (a) Find the point that the particle's movement is parallel to a dust particle moving along the dotted straight line graphed.

(b) When the particle reaches an x value of 1, the y-coordinate is decreasing at a rate of 3 cm/s. How fast is the x-coordinate of the point changing at that instant?

8. Ryan and Stella were being chased by a pack of zombies. At point P they decided to split up and Stella ran south at 12 ft/s. Ryan waited for ten seconds to try to draw most of the zombies towards him and then started to run east at 15 ft/s. One minute later the two of them are still alive and running in their respective directions. At what rate are Ryan and Stella moving apart at this instant?