Derivatives of Inverses

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.
- 1. Find $\frac{d}{dx}(\arccos(5x-x^3))$.

2. Using techniques that we used to find $\frac{d}{x}(\arccos(x))$ to find $\frac{d}{x}(\arcsin(x))$

3. Use the conclusions from above to find $(\arcsin(2^x x^5))'$.

Summary of the derivatives of many of our familiar functions from pg 177 of text:

BASIC DIFFERENTIATION RU	LES FOR ELEMENTARY FUNCTIONS	1
1. $\frac{d}{dx}[cu] = cu'$	$2. \ \frac{d}{dx}[u \pm v] = u' \pm v'$	3. $\frac{d}{dx}[uv] = uv' + vu'$
4. $\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{vu' - uv'}{v^2}$	5. $\frac{d}{dx}[c] = 0$	$6. \ \frac{d}{dx}[u^n] = nu^{n-1}u'$
7. $\frac{d}{dx}[x] = 1$	8. $\frac{d}{dx}[u] = \frac{u}{ u }(u'), u \neq 0$	$9. \ \frac{d}{dx} [\ln u] = \frac{u'}{u}$
10. $\frac{d}{dx}[e^u] = e^u u'$	$11. \ \frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$	12. $\frac{d}{dx}[a^u] = (\ln a)a^u u'$
13. $\frac{d}{dx}[\sin u] = (\cos u)u'$	14. $\frac{d}{dx}[\cos u] = -(\sin u)u'$	15. $\frac{d}{dx}[\tan u] = (\sec^2 u)u'$
16. $\frac{d}{dx}[\cot u] = -(\csc^2 u)u'$	17. $\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$	18. $\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$
19. $\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1-u^2}}$	$20. \ \frac{d}{dx} [\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$	21. $\frac{d}{dx}[\arctan u] = \frac{u'}{1+u^2}$
22. $\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1+u^2}$	23. $\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{ u \sqrt{u^2 - 1}}$	$24. \ \frac{d}{dx} [\operatorname{arccsc} u] = \frac{-u'}{ u \sqrt{u^2 - 1}}$

4. Find the equation of the line tangent to f at x = 1 where $f(x) = 4x \arccos(x - 1)$.