$\lim _{x \rightarrow \pm \infty} f(x)$

1. Find the positive horizontal asymptote(s) if they exist for each of the following:

$$
\frac{x+2}{6 x-4} \quad \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}
$$

$$
x^{2}-x
$$

$$
\frac{\sqrt{2 x^{2}+1}}{3 x-5}
$$

$$
\frac{x^{2}+x}{3-x}
$$

$$
\frac{x-2}{x^{2}+1}
$$

Check your answers by reading Examples $3,10,4,11 \&$ problem $\# 17$ from $\S 2.6$.

Derivatives

2. Let $f(x)=\frac{1}{x}$.
(a) Find $f^{\prime}(2)$.
(b) Find the equation of the line that is tangent to f at $x=2$.
(c) Draw the graph of f and your line and verify your results.

3. Recall that average velocity is $\frac{\text { total distance }}{\text { time it took }}$. What do you think instantaneous velocity is?
4. If a grapefruit was dropped from a building, it's distance from where it was dropped varies with time by the equation $-4.9 t^{2}$. Use your answer from (3) (or look at $\S 2.7$) to find the instantaneous speed of the grapefruit one second after its release. Hint: we've already done this computation today.
