Extrema

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Definition 0.1. Let c be a number in the domain D of a function f. Then $f(c)$ is the

1. absolute maximum value of f on D if $f(x) \leq f(c)$ for all x in D.
2. absolute minimum value of f on D if $f(c) \leq f(x)$ for all x in D.
3. local maximum value of f if $f(x) \leq f(c)$ for all x near c.
4. local minimum value of f if $f(c) \leq f(x)$ for all x near c.
5. Draw graphs of two functions f and g so that:
(a) f is continuous on $[0,5)$
(b) f has a local max when $x=3$
(c) $f^{\prime}(3)=0$
(d) g is
continuous on $(-5,0]$
(e) g has a local max when $x=-3$
(f) $g^{\prime}(-3)$ is not defined.

6. Consider $m(x)=x^{3}-9 x^{2}-48 x-5$.
(a) Find the critical points of m.
(b) Find all relative extrema and their values using the first derivative method.
7. Use calculus to find all the relative extrema of $g(x)=\sin ^{2}(x)+\sin (x)$ on the interval $[0,2 \pi]$.
