The Derivatives as Functions

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

1. Let f be the function recording a car's distance (in miles) from home as a function of t (in hours) that is graphed below. Answer the following:
(a) How far from home is the car initially?
(b) When is the car moving away from home?
(c) Estimate the following $f^{\prime}(1)$

$$
\begin{aligned}
& f^{\prime}(3) \\
& f^{\prime}(5) \\
& f^{\prime}(6) \\
& f^{\prime}(7) \\
& f^{\prime}(8) \\
& f^{\prime}(9)
\end{aligned}
$$

2. Since $f^{\prime}(12) \approx-\frac{1}{2}$ we could graph the point $\left(12,-\frac{1}{2}\right)$ on the graph of f^{\prime}. Use your answers from above to plot points of $f^{\prime}(x)$ and then sketch the graph.

Recall that the derivative can be algebraically defined as:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3. Let $f(t)=-4.9 t^{2}$. Algebraically find the algebraic rule for $f^{\prime \prime}(x)$.
4. Find the equation of the line tangent to the graph of $y=\frac{1}{x}$ when $x=1$.
5. Sketch a graph of a function α that satisfies all of the following:
$\alpha(-2)=4$,
$\lim _{x \rightarrow-2} \alpha(x)=0$,
α is continuous on $(0,5)$,
$\alpha(-3)=1$, and
$\alpha^{\prime}(3)$ does not exist.

