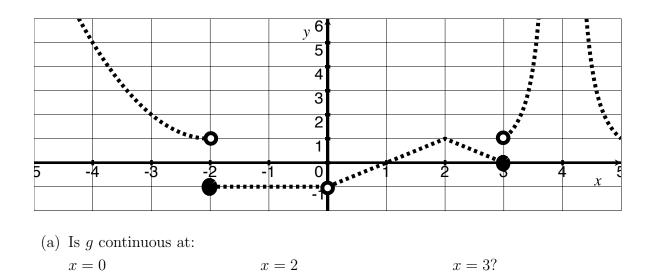
Continuity

1. Consider the piecewise-defined function

$$f(x) = \begin{cases} \frac{(x+3)(x+4)}{x+4} & \text{if } x < -2\\ 1 & \text{if } -2 \le x \le 0\\ -1 + \log_2 x & \text{if } 0 < x \end{cases}$$

(a) Draw the graph of f on the axis below.


				$v^{5\uparrow}$					
				^y 4					
				3					
				2					
				1			2		
-4	-3	-2	-1	0	1	2	3	4	v
				-1					л
				-2					
				-3					
				-4					

2. Find $\lim_{x \to -2} f(x)$ either numerically or graphically.

3. Find f(-2)

4. Is f continuous at x = -2?

5. Let g be the piece-wise defined function below. This means the graph of g is the *entire* dotted graph shown below.

- (b) Find all the x coordinates where g is discontinuous.
- 6. Sketch a graph of a function α that satisfies *all* of the following:

 $\alpha(-1) = -3, \lim_{x \to -1^+} \alpha(x) = 2, \ \alpha \text{ is continuous on } (0,3), \text{ and not continuous at } x = 4.$

				y_{A}^{5}					
				3					
				2					
				1			2		
-4	-3	-2	-1	0	1	2	3	4	v
				-1					A
				-2					
				-3					
				-4					