Final Tuesday

TMath 124

Winter 2021

Show *all* your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

- 1. The work for the following problems is *wrong*. Explain why the solution is wrong *and* then find the correct solution (numerically, graphically, or algebraically).
 - (a) [5] Find $\frac{dy}{dx}$ given $y = \log_2(x^2(x^4 + 2x^2))$.

$$y = \log_2((x^2)(x^4 + 2x^2))$$

= $\log_2(x^6 + 2x^4)$
 $\frac{dy}{dx} = \frac{1}{x\ln(2)}(x^6 + 2x^4) + \log_2 \cdot (6x^5 + 8x^3)$

(b) [4] Find
$$\frac{dy}{dx}$$
 given $\lim_{\theta \to \frac{\pi}{2}^{-}} \frac{\sin(2\theta)}{1 - \cos(2\theta)}$
$$\lim_{\theta \to \frac{\pi}{2}^{-}} \frac{\sin(2\theta)}{1 - \cos(2\theta)} =_{L'H} \lim_{\theta \to \frac{\pi}{2}^{-}} \frac{\cos 2\theta \cdot 2}{0 - (-\sin 2\theta \cdot 2)}$$
$$= \lim_{\theta \to \frac{\pi}{2}^{-}} \frac{\cos 4\theta}{\sin 4\theta}$$
$$= \frac{\cos 2\pi}{\lim_{\theta \to \frac{\pi}{2}^{-}} \sin 4\theta} = \frac{1}{0^{-}} = -\infty$$

- 2. [5] Draw a graph for a function $\alpha(x)$, that satisfies *all* of the following:
 - (a) α is continuous on the interval (-2, 4),

(b)
$$\lim_{x \to -2} \alpha(x) = \infty$$
,

- (c) $\alpha'(2) = -1$, and
- (d) $\lim_{x \to 4} \alpha(x) \neq \alpha(4).$

				y4					
_				3					
				2					
				1			1		
-4	-3	-2	-1	0	1	2	3	4	1
				-1					-
				-2					
				-3					
				-4					

3. The following graph is a function, d, that returns the *distance* (in feet) a fly is from a spider web after t seconds.

$$\frac{d}{dt}d|_{t=2}$$

- (c) [3] What is the speed of the fly when t = 2 and is the fly moving towards or away from the web?
- 4. [5] Draw a graph for a function $\beta(x)$, that satisfies all of the following:
 - (a) $\lim_{x \to -\infty} \beta(x) = 2$,
 - (b) β is continuous on the interval (-2, 3),
 - (c) $\beta'(-1)$ does not exist, &
 - (d) $\beta'(x) < 0$ when 0 < x.

				v ⁵					
				^y 4					
				3					
				2					
				1			1		
-4	-3	-2	-1	0	1	2	3	4	
				-1					•
				-2					
				-3					
				-4					

5. Let f be the function graphed on the right. Let $h(x) = 2^x$. Using this and the information about g given below, find the following (if possible!):

(d) [3] Find $\frac{d}{dx}(g(h(x)))|_{x=1}$.

(e) [3] Find
$$\lim_{x \to 9} \frac{f(x)}{g(x)}$$

(f) [2] Find the equation of the line tangent to g at x = 9.

(g) [2] Identify the area on the graph described by
$$\int_{6}^{10} f(x) dx$$
.
(h) [2] Find the value of $\int_{6}^{10} f(x) dx$.

- 6. Use the graph provided by JCRooks on CoronavirusWA Reddit on Mar 13th duplicated above for the following questions. JCRooks is plotting the SLOPE of the 7-day average of new Covid-19 cases in King County over time.
 - (a) [2] Describe what is happening to the 7-day average of new Covid-19 cases in King County at the end of December.
 - (b) [3] Identify a time that the 7-day average of new Covid-19 cases was at a local minimum. Explain/justify your answer.
 - (c) [2] Why do you think JCRooks provided this graph of the *slope* instead of the 7-Day average of new Covid-19 cases directly?

7. [4] Find $\frac{dy}{dx}$ where $y = \frac{x^{0.5x}}{\arctan(x)}$

- 8. Ryan and Stella were being chased by a pack of zombies. At point P they decided to split up and Ryan ran north at 12 ft/s. Stella waited for five seconds to try to draw most of the zombies towards her and then started to run east at 15 ft/s.
 - (a) [3] Find an equation relating the speed that Ryan and Stella are moving apart to other variables.
 - (b) [2] At what rate are Ryan and Stella moving apart two minutes after Stella started running (assuming they are still alive!)

- 9. An industrial tank is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the tank is 5000 cubic feet. The hemispherical ends cost \$14 per square foot where as the sides cost only \$8 per square foot.
 - (a) [4] Find a function that describes the cost of the tank dependent only on one variable.
 - (b) [2] Outline the steps needed to find the maximum enclosed area. Do *not* perform the steps!!!

10. [4] Choose a problem from this exam that you've already answered,

- (a) show a second way of approaching/building a solution, and
- (b) explain why you did not choose this second method initially.